+3(5th Sem) — Math (H) DSE - I (NC)

2021

Time: 3 hours

Full Marks: 80

The figures in the right-hand margin indicate marks.

Answer all questions.

1.	Answer all questions serially:	1×12 = 12	
	(a) The variables of LDD make	conco	224

- (a) The variables of LPP make sense and corresponds to real world problem is assured by _____ condition of the variables of LPP.
- (b) In simplex method, the element in the intersection of departing row and introducing column is called _____
- (c) In the optimal table of simplex method of Z_i C_j = 0 for all j, indicates LPP has _____ solutions.

RQ - 23/3(Turn over) https://www.odishastudy.com

(d)	In every iteration of simplex method for
	maximization problem replace a variable of the
	basis with another variable of non-basis which
	corresponds to value of Z - C
(e)	For maximization problem of big-M, method
	the coefficient of artificial variable of the
	objective function is
(f)	In a n × m transportation problem, a feasible
	solution is basic feasible solution if the
	number of feasible solution is
(g)	n × m transportation problem is called
	balanced of
(h)	Dual of Dual LPP is called LPP
(i)	The number of constraint equations of the
	Primal LPP is equal to number of o
	the Dual LPP
(j)	The optimal values of Primal LPP and Dua

al LPP are __

RQ - 23/3

Contd

(2)

- (k) When the sum of gains of one player is equal to sum of losses to another player in a game? Then the game is known as
- (I) The value of the game with the pay off matrix

Part - II

Answer any eight questions :

$$2 \times 8 = 16$$

(a) Max Z = 2x + 4y

subject to

 $x + 3y \le 7$, $2x + y \le 6$, x is unassigned, $y \ge 0$ change this LPP to a standard LPP.

(b) Max Z = 3x + 4y

subject to

$$x + y \le 7$$
; $x + 4y \le 12$, $x \ge 0$, $y < 0$

Change the LPP to a standard maximization LPP.

(3) (Tum over)

https://www.odishastudy.com

(c)
$$Max Z = 3x + 4y$$

s. t

$$2x_1 + y \ge 5$$
; $3x + 2y \ge 10$, $x_1, x_2 \ge 0$
write the its dual LPP.

(d) Min Z = 3x - 5y

s.t.

$$2x + 3y \ge 7$$
; $x_1 + 6x_2 \ge 12$, x is unassigned,
 $y \ge 0$ write its dual LPP.

(e) Max Z = 6x + 7y

s.t.

$$2x + 3y \le 5$$
; $4x + 7y \le 30$, $x \ge 0$, $y \ge 0$ write the initial simplex table of the LPP and find introducing column.

$$RQ - 23/3$$

Contd.

https://www.odishastudy.com

Transfer it to a balanced transportation problem.

(g) The profit matrix of the assignment problem is:

	Α	В	C	D
J_1	10	15	20	24
J_2	8	10	22	20
J ₃	7	12	25	18
J_4	9	11	13	17

Find the loss matrix of the assignment.

(h) Solve the game and find the value of the game :

Player B
$$\begin{array}{c} B_1 & B_2 \\ Player A & A_1 & \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix} \end{array}$$

(i) Solve the game and find the value of the game :

Player B
$$B_1 B_2$$
Player A
$$A_1 \begin{bmatrix} 1 & 1 \\ 4 & -3 \end{bmatrix}$$
(5)
(Turn over)

s.t.

$$2x + 3y = 7$$
; $x + 4y = 10$; $x \ge 0$, $y \ge 0$

Write the initial simplex table.

Answer any eight questions of the following:

$$3 \times 8 = 24$$

(a) Solve the LPP by Simplex Method:

Max Z =
$$5x - 7y$$

s.t. $3x + 4y \le 12$; $x + 6y \le 18$, $x, y \ge 0$.

(b) Solve the transportation problem and find total cost of transportation using North-West Comer rule :

	01	02	03	Supply
D ₁	10	12	13	15
D_2	9	8	7	15
D ₃	11	9	10	10
Demand	20	18	2	

(c) Solve the transportation problem and find total cost of transportation using Vogel's method

RQ = 23/3

(6)

Contd.

:	01	02	03	Supply
D ₁	8	7	9	20
D ₂	10	9	11	15
D_3	11	10	12	15
Demand	25	15	10	

(d) Solve the assignment problem and find total cost of assignment :

$$\begin{array}{c} & A & B & C \\ J_1 & \begin{bmatrix} 7 & 5 & 8 \\ 8 & 5 & 4 \\ J_3 & \begin{bmatrix} 10 & 11 & 6 \end{bmatrix} \end{array}$$

(e) Solve the assignment problem and find total cost of assignment :

$$\begin{array}{c|cccc} & A & B & C \\ J_1 & \begin{bmatrix} 10 & 12 & 6 \\ 15 & 8 & 10 \\ J_3 & 7 & 14 & 12 \\ \end{bmatrix}$$

(f) Prove that, dual of the dual LPP is the Primal LPP.

$$RQ = 23/3$$
 (7) (Turn over)

https://www.odishastudy.com

$$Min Z = 2x + 4y$$

s.t.
$$2x + y \ge 5$$
; $3x + 2y = 12$, $x, y \ge 0$.

(h) Solve the game with the pay off matrix:

Player A
$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

and find the value of the game.

Solve the game with pay off matrix :

and find value of the game.

(j) Solve the game with the pay off matrix:

and find value of the game.

Contd.

$$4 \times 7 = 28$$

(a) Solve the LPP using Simplex Method:

$$Max Z = 2x + 3y$$

s. t.
$$3x + 2y \le 12$$
; $4x + 2y \le 14$; $5x - 3y \le 8$
x, $y \ge 0$.

OR

Solve the LPP using Big-M, method

$$Max Z = 4x_1 + 2x_2$$

s.t.
$$2x_1 + x_2 \ge 3$$
; $3x_1 + 2x_2 \ge 8$, x_1 , $x_2 \ge 0$.

(b) Find the dual LPP of the LPP

$$Max Z = 3x + 2y + 3z$$

s.t.

$$x + 3y + 4z = 18$$

$$2x + y + 5z \ge 8$$

$$5x + 4z \le 6$$

x, y unassigned, $Z \ge 0$.

OR

State and prove Fundamental theorem of duality.

(c) Using the following profit matrix, determine the optimum profit for the assignment problem:

$$RQ - 23/3$$

(9)

(Turn over)

OR

Using lowest cost entry rule find the total transportation cost of :

	W_1	W ₂	W ₃	W ₄	Supply
F ₁	11	20	7	8	50
F ₂	21	16	10	12	40
$\overline{F_3}$	8	12	18	9	70

Demand 30 25 35 40

(d) Solve the game using graphical method:

$$\begin{bmatrix} 1 & 3 & -1 & 4 & 2 & -5 \\ -3 & 5 & 6 & 1 & 2 & 0 \end{bmatrix}$$

OR

(10)

RQ - 23/3

Contd.

Solve the game whose pay off matrix is

and find value of the game.

https://www.odishastudy.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से

https://www.odishastudy.com