B.Tech-3rd(All Br.) Mathematics-III

Full Marks: 70

Time: 3 hours

Answer six questions including Q. No. 1 which is compulsory

The figures in the right-hand margin indicate marks

- 1. Answer the following questions: 2×10
 - (a) Express $\sin (1 + i) \sin a + ib$ form.
 - (b) Find all values of $(-1+i)^{-3i}$.
 - (c) Show that the function \bar{z} is nowhere differentiable.
 - (d) Find $\oint_C \bar{z} dz$ where C is the unit circle about the origin.
 - (e) Write the maximum modulus theorem.

- (f) Obtain the partial differential equation from z = axy + b by eliminating arbitrary constants a and b. http://www.odishastudy.com
- (g) Classify the one dimensional wave equation as parabolic or hyperbolic.
- (h) Evaluate $\int_C y^2 dx 2x^2 dy$ where C is the parabola $y = x^2$ from (0, 0) to (2, 4).
- (i) Find a unit normal vector of the surface represented by $x^2 + y^2 + z^2 = 36$.
- (j) Evaluate $\int_C \frac{dz}{z-1} \quad C: |z| = 1.$
- 2. (a) Find all solutions of the equation $z^4 (3 + 6i) z^2 8 + 6i = 0$.
 - (b) Determine the set of all z satisfying the equation |z| + Re(z) = 0.
- 3. (a) Find the linear fractional transformation w = f(z) which maps i, 1, 2 in z-domain to i, -i, 1+i in w-domain respectively.

 Negermine the radius of convergence and coon disk of convergence of the power

$$\sum_{i=1}^{n} \frac{1}{1-(z+8i)^n}.$$
 5

- 4. It is the same $\oint_C \frac{z^4}{z-2i} dz$ where C is any closed out the choloring 2 i.
 - Figure $\oint_C \frac{z \sin(3z)}{(z+4)^3} dz$, where C is the circle |z-2i| = 9.
- Evaluate $\oint_C \frac{z}{\sinh^2(z)} dz$, where C is the circle of radius 1 about $\frac{1}{2}$.
 - (b) Suppose f is differentiable in an open disk about zero and satisfies f" (z) = 2 f(z) + 1.
 Suppose f(0) = 1 and f'(0) = i. Find the Maclimum expansion of f(z).

 Find the temperature at any arbitrary time in a bar of length 2 whose ends are kept at zero and lateral surface insulated if the initial temperature

is
$$\sin\frac{\pi x}{2} + 3\sin\frac{5\pi x}{2}$$
.

 Find the deflection of a string stretched between two fixed points at a distance 2c apart when the string is initially at rest and have initial velocity v(x), where

$$v(x) = \begin{cases} \frac{x}{c}, & 0 < x < c \\ \frac{2c - x}{c}, & c < x < 2c \end{cases}$$

- 8. (a) Using residues evaluate $\int_{0}^{2\pi} \frac{d\theta}{3 + \sin \theta}$ 5
 - (b) Evaluate $\int_{-\infty}^{\infty} \frac{dn}{(n^2+1)^2}$